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MIXED STRATEGIES AND THEIR APPLICATION
IN THE ENCOUNTER-EVASION DIFFERENTIAL GAMES™

S.A. VAKHRAMEEV

A positional encounter-evasion differential game with geometric constraintson the
players' controls, depending on the system's state, is examined. The concept of the
players' mixed strategies is introduced and an alternative is proved which asserts
that either the positional encounter game or the positional evasion game is always
solvable. The paper continues the investigations in /1—4/.

1. Dynamic system. Let the controlled system's behavior be describedby the equation
x'=f(t,x,u, ”)JﬁER”,uER”,vE Re (1.1)
where z is the system's phase coordinate vector, u and » are the controls of the first and
second players, respectively. By Q™ we denote the space of all nonempty compacta in R™ with
the Hausdorff metric k. We assume as specified the mappings
P:RXR"' - Q" Q:R X R"—» (1.2)
satisfying the following conditions:
1°. The mappings t+— P (t,z),t— Q (¢, ) are measurable, while the mappings =z~ P (¢, 2),
z— Q (¢, z) satisfy the Lipschitz conditions
h (P (t1 x)v P(tv y)) < @ (t” r—y Iv h (Q (ti .’l)), Q (t7 y)) <(l (t) [.‘L‘ — ¥ I (1'3)
2°. Measurable mappings

Py:R— QP Qy: R—> Q1
exist such that

U Ptz CPolt) L{zn Q. x) T Qo (t)

*<=R"

The following assumptions are made concerning the function f in the right-hand side of
(1.1).

1°. The function f(-, 2z, u,v): R - R" is measurable.
29, For all z&E R ues Py(t),ve Q, (f)

[fzu )<<k +]a) (L.4)
3°. For all z,y= R u,u" =P, (), v, v & Q, (1)

[ftzuw, V) —ftyu, v [<B@O(z—y|+]u —u"|+ ]|V —0") (1.5)

Here the functions a, f, k: R —- R are nonnegative and locally summable.

2. On families of Radon measures on R™. Let p, t&R, be a family of Radon
measures on R™, depending on parameter f& R. We say that the family u, t= R, is weakly
measurable if for any continuous function ¢ :R™— R with compact support the function

t e @) = § o) dp,

Rm
is (Lebesgue) measurable. Of particular interest are weakly measurable families u, tE R, of
Radon measures on R™, whose supports supp p, satisfy the inclusion

supp p C F () € Q"
for almost all te& R. About such families we shall say that they are concentrated on the
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mapping #:R-—» Q™ If the mapping F : R — Q™ is measurable, then such families exist. As a
matter of fact, let f:R-— R™ be an arbitrary measurable branch of mapping 7 :R — Q™ Then the

family of Dirac measures 6,(,>,tER yields an example of a weakly measurable family of Radon
probability measures, concentrated on mapping F.

Proposition 1. Let u, ¢ R, be a weakly measurable family of Radon measures on R™,
concentrated on a measurable mapping F : R - Q™ Then for any function f: R X R™ > R measur-
able in t& R and continuous in u & R™, the function

te o ftupd = § Fuydp,
Rm

is (Lebesgue) measurable.

The proof is based on the theorems of Luzin and of Scorza—Dragoni (see /5,6/).

For any compactum 4 € Q™ we denote the set of all Radon probability measures concentrat—
ed on Aby A,. It is well known that the set A4, is weakly (sequentially) compact /7/.
Furthermore, it can be proved that the equality

conv @ (4) = {{p, ¢ (W) |n s 4,) (2.1)

holds for any continuous function ¢:R™— R". As a matter of fact, let (U,¢) be the sup-
port function of UeQ®
¢ (U, ) = max (u, })
uslU

The set D= {u, p(up[p=4d,) 1s convex and compact and its support function is
c(D,¥) = max (, i, @ (uh) e (@ (4), ¥)
usA

c
Therefore, D C conv ¢ (4). However, we obtain equality (2.1) because

conv D =D D¢ (4)

Proposition 2.2. Let g, t& R, and v, t & R be weakly measurable families of Radon

measures on R™and R" concentrated on measurable mappings
F:R—->Q", G:R—->Q"
respectively. Then the family m; = p; ® vy, & R, of Radon measures on R™™ is weakly measur-
able and is concentrated on the mesurable mapping
t—=F () XG(): R-> Q™™
The proof follows from Proposition 2.1.

3. Strategies and motions. For an arbitrary mapping
F:R X R"-» Q™

measurable in t&E R, by F,(z; t,, t*) we denote the collection of all weakly measurable famil-
ies pg te R, of Radon probability measures on R™, concentrated on mappings F(-,z):R—> Q™
for t, < t< #*. A mapping which associates a nonempty subset of P, (z; ¢, ) (Q. (z; £, ) ) with an
arbitrary position (t, #) is called a mixed strategy U, (V, of the first (second) player.

Suppose that the first player chose a mixed strategy U,. We consider a partitioning A
of the semiaxis [#, o) into a system of half-open intervals of the form

< I< e i =0,1, ..., 7 =1{, 1> 00 (i > o)

Let | A | = sup; (t;s; — 7;). We look at the differential equation

za @) = <" @ v, 1t za (1), 1, 0)) (3.1)
K< Ty, =0, 1, .,z (8) = 7
w® & U, (55 za (1)), v & Qc (Ta (12); Tis Tian)

We see that it has the solution za () = za (& to. Zgs U, Vi) continuable onto the half-line t2> ¢,
Indeed, since u® and + are probability measures for almost all i,

(P v, fit,nu < f oz w0 <k A+ 12D,
I @V, 1t g u o —Fltz wo)y || f o)~ fltzuo) | <BO|z—y]

According to Propositions 2.1 and 2.2 the functions ¢w— i @ v{"), 7 (t, 2, u, v)) are measurable. Con-
sequently, the existence of a unique (under a specific choice of families u{ and +{,i=10,1,..)
solution, continuable onto the half-line ty <t << oo, of Eq. (3.1) follows from well-known re-
sults in the theory of differential equations /5/. The solution 24 (f) = 2a (& t, Zos Uer vi) of
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Eq.(3.1) is called the Euler polygonal line generated by the first player's mixed strategy U,.
The Euler polygonal line generated by the second player's mixed strategy V, is defined analo-
gously.

Proposition 3.l. Every Euler polygonal line of the first or second player is asolution
of the differential inclusion :

' = conv f (¢ x, Py (), Qy () (3.2

The proof is obtained from the results of Sect.2. From Proposition 3.1 follows the cor-
rectness of the next definition.

Every function z(f), t>t,, for which we can find, on any finite interval { <t #f, a
sequence {:cAk} of Euler polygonal lines

Zag () = Tag 10, 200, Ues V) (2a () = Zag (85 20, 250, Vo, n)

generated by the first (second) player's strategy U, (V.,), such that
IAk(t)ZI(t)i t0< t< iy, Ig‘)_’xov IAk |_’07 k—> o0
is called a motion z(¥) =z (t t,, %y U (2 (t) = z (& ¥, %, V) generated by the first (second)
player's mixed strategy U, (V,). It can be proved that every motion of the first or second
player, starting from point z, at instant ¢ =1, is a solution of the differential inclusion
z' & conv f(t, z, P (¢, z), Q (&, 7)), x(t) = =,

4, Encounter-evasion differential game. The game being examined is made up of the
following two problems. Let nonempty closed sets M and N in the position space R X R®, an
initial position (¢, %,) and an instant ¥ > t, be specified.

Problem 1. Find the first player's mixed strategy U * ensuring the contact
Lz eEN, (L <i<t, La@eEM, t=1(@(-) <
for all motions z (f) = z (& &y Zo, U¥).
Problem 2. Indicate open neighborhoods G (M) and H (N) of sets Mand N, as well as a
second player's mixed strategy V. *, such that the contact
GrWesHN, p<t<t,(,z@))=GM,r=1( () &
is exluded for all motions =z (f) = z (& &, %o, V. *).

Problem 1 is called the problem of encounter with set M inside set Nby the instant ¥,
while Problem 2 is called the problem of evading G (M) inside H (N) up to the instant §.

5. Stable sets. We say that a set W R X R* is u,-stable (v, stable) if for any
(b TR EW, t* > 1, and vi* & Q, (45 by, 1*) (W FSP, (24 By, t*)) there exists p* S Plzy; by (vt E
Q. (x4; g, t*)) such that the solution z (f), £, <t < t* of the differential equation

T = <l“l* ® 'Vt*v f(tv z, U, v)), z (tt) = Ty (5'1)

satisfies the condition (#*, z(#*)) & W or the condition (v, z (1)) & M ((v, z (1)) & H(N)) for some
T, By T Y

Theorem 5.1. If set WC R X R® is u -stable (v.-stable), thenits closure W = Cl W
is u,-stable (v, -stable).

We carry out the proof, say, for a u,~stable set W. The following proposition is valid.

Proposition 5.1. Let v*= Q. (zy; t4, t*) and z,® — z,as k— o0 Then there exist v/® &
Q. (2,®; ty, t*) such that v,® — v;* weakly for almost all ¢, f, << £<C %,

Indeed, let 0% = (0, . ,0{),...} be a sequence of coverings of space R¢ by open sets, such
that ; .
diam 0¥ = max diam 0) — 0 (i - co)
H
Let o), i=1, ... be a partitioning of unity, subordinate to covering 0¥ = (0§, ..., ob, L.
We set

MO =D dP ey, =8 M, Li=12...
\ =1 ¢ @

where +1),te R . are measurable functions such that W eoP Nt z) if the latter set is
nonempty, and vﬁ’) (t) =»(¢) , otherwise, where v (t),t= R, is an arbitrary measurable branch of map-
ping ¢+ Q (¢, 7). From the continuity of mapping z+— Q(t,z) it follows that we can find a sequence
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k3

of measurable functions (™ (1) such that ¥ (1) =0Q(, Iik)) and o (1) - o (1) for almost all ¢, t, <
t <™ uniformly relative to i,;=1,2,.... We set '

W = 2; A () By i (0 k=12,
~

From the very method of construction of the sequence (v} it follows that +Pe ¢, %, %
and +" - v* (k — ) weakly for almost all ¢,f,<<t<(#*. Proposition 5.1 is proved. *

Let us assume now that the assertion of Theorem 5.1 does not hold. Then there exist
(ter Tp) EW, t* > by, vi* € Q; (Zy ty, t*), such that for any measure p,* & P, (2, f4, t*) the solution
z (1), t, <t I*, of Eq.(5.1) satisfies the conditions

(t, 2(PNEW, 7,z () £ M, £, <7< t*

However, since (f,, Z,) = W, a sequence {(t,®, z,#)} of points of W exists such that (£,

2,®) > (ty, Z4), k—>oc0. By Proposition 5.1 a sequence v,®&Q,(x,®, ty, 1*) exists such that v,® -

vi* (k- o) weakly for almost all ¢, £, <{¢<Ct* Finally, from the u,-stability of set W

follows the existence of "M & P, (z,®; £,®, 1*) such that the solutions zy (D), t® <t < t¥%,
=1,2..., of the differential equation

o @)= RV, [t ), u ), zE) =2

satisfy either the condition (i*,z; (t*)) & W or the condition (T, (tx)) = M for  some T,
1, < 7 {t*. It can be shown that some subsequence of sequence {xj (f)} converges uniformly to
an absolutely continuous function =z (f), £, < ¢<{ #* , which satisfies Eq.(5.1) with some p* &
P, (zy; ts, t*). This fact leads to a contradiction. The theorem is proved.

6. Derivation of the basic estimate. Let the functions z (f), y (), t > t, satisfy
Egs. (6.1) and (6.2), respectively,
I' = <Pf*t ® Vis f(tv Z, U, U)>1 x (t*) = I* (6'1)
yo= e ® v F (Y w0, ¥ ()= (6.2)

Here the families p; € P, (yy; g, 00) and v; & Q. (z4; ty, ©) are arbitrary, while the families
we* € P (245 1y, 00) and v*: € Q, (yy; Ly, e0) were chosen from the condtions

max K (t, z,, 2y, B:*, v)= min max K (1, 2y, 24, 1, V), L > s
veEQ(t, xw) REP (1, x¢) VEQ(L, %x)

min K (t, Y4, 24, B, v,*) = max min = K { Yy, 240 1, V), E > 1y
WEP(t Vx) VEQ (L, Va) HEP (2, yx)

K (t, z, 2, H,V) = <P’ & v, f(t,.’[, Uy U))s B =Ty — Ux

The possibility of making such a choice can be substantiated on the basis of the results in
Sect.2 and of the Filippov—Kasten theorem (see /5/).

Theorem 6.1. For an arbitrary bounded domain G C R X R containing the positions (i,
zy) and (fy, y4) there exists a locally summable function mg: R— R such that the inequality

i t

) <p*ta) (142§ YW dr) + { ot m(x) dr (6.3)

m @) =4gB(t)+ Bma (1), g=aiamG, @ty )= mc(v)dr

te

YO =P@+28@a@ p@D=12@—y @I

is valid for all 2> 1y .
The proof of Theorem 6.1 is carried out analogously to /1,2/ and is based on the follow-
ing assertion which can be proved by using the standard construction of a partitioningof unity.

Proposition 6.1. Let the mapping F : R* > Q™ satisfy the Lipschitz condition
P

R(F@, FE)<Lrlz—yl|
Then for any measure p () & F,{r) there exists a measure p (y) & F,(y) such that
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[ <p @) @) —<n @ o @ I<Lelrlz—y|
for any function ¢: R™ - R satisfying the Lipschitz condition

o)~ 1< Ly lu—v|

7. Extremal barrier. Let WC R X R®™ be a nonempty closed set in the position space
R X R™ The first and second player's mixed strategies U/ and V,” extremal to this set are
defined thus. Let T.={(t,z) t=7} If [, 1 W=, we set

U (be Ta) = Po (Zas tar 0), V' (tas Ta) = Qo (T4 tar 0)
otherwise

(Jce (tht)=“"'t' EP: (I,.; ttv °°” max K(t, .‘t*,I*—
VEQ(t x)

Wy, B*, V)= min max K (L, 2y, Ty — War b, V), t 1y}
REP (1, 24) VEQ (1, %4)
Vel (bar Za) =
(VP E Qc (Zyjty; )] min K 24 Wy — Ty, 1, V)=

HEP (8, %)

max min Kt Ty Wy — Ty, 1, V), t > L4}
VEQt, %) KEP (t, %)

where W, is the vector of the section W (t,) of set W by the hyperplane [T, lying closest
to 1z, Using estimate (6.3), the next two assertions can be proved analogously to /1,2/.
i

Theorem 7.1. Let W R X R® be a closed u,-stable set, U’ be a mixed strategy ex-
tremal to this set, and (i, %) &€ W. Then for any motion =z (f) = z (& &, %, US) the inclusion
(t, 2 (1)) & W is fulfilled up to the instant T that 1,z (1)) = M.

Theorem 7.2. Let W R X R™ be a closed VU,-stable set, V.S be a mixed strategy ex-
tremal to this set, and (¢, %,) € W. Then for any motion z () = z. (& &, %o V) the inclusion
(t, z (8)) =W is fulfilled up to the instant T that (1, z (1)) & H (V).

8. Alternative. The following theorem is valid.

Theorem 8.1. Let the condition formulated in Sect.l be fulfilled. Then either Problem
1 or Problem 2 is always solvable for any nonempty closed sets M and N, initial position
(ty, %) and instant & > 2o-

Proof. We first consider Problem 1 on the encounter with set M inside set N by the in-
stant @¥. From the halfspace ¢t<(® we remove those positions (%, Z4) for which the following
two circumstances obtain simultaneously.

1°. The problem of evading at least one neighborhood G {M)of set M inside at least one
neighborhood H (N) of set Nup to the instant & > f, is solvable from the position (Z,, z,) as
from the initial position.

20, An instant t*, (f, < t* < ®) and a second player's control v,* & Q.(Z4; fe» t*) exist such
that under an arbitrary choice of the first player's control pu* & P, (z,, t,, f*) the solution
z(f), ty <t << t* of the differential equation

= Kpu®* Qv (L z,u, V), (L) =2z,
satisfies the condition (¢, z, (8)) & M, 1, <t t*

The set W,? of remaining positions possesses the following properties which follow im-
mediately from its construction.

1,°. Set Wyois u,-stable.

2° W, CN.

3,°. At some instant T<{® the section W,? (1) of set W,? by the hyperplane Iy is wholly
located in the section M (1) of set M by the same hyperplane.

Every set satisfying the three conditions listed is called a u, -stable bridge. Its maxi-
mality, and hence, by virtue of Theorem 5.1, its closeness follow from Theorem 7.1 and the
method of constructing the bridge W,°.

We now consider the problem of evading set G (M) inside set H (N)up to the instant & > fo.
From the halfspace ¢ < we remove those positions (i, z,) for which the following two circum-
stances obtain simultaneously.

1°. The problem of encounter with at least one set G*(M) C G (M) inside at least one set
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H* (N) C H (N) by the instant ¢ >» t, is solvable from the position (i, z,) &S from the initial
position.

2°. An instant * (ta < t* < ®) and a first player's control p,* & P (Zy; t,, t*) exist such
that under an arbitrary choice of the second player's control w;* € Q. (x4} ty, £*) the solution
z(8), t, < t<< t*, of the equation

z = (P't* ® Vt*v f(t’ Ty, U, U)>v z (t*) = Ty
is such that (¢, z(#)) = H (N) when 1, << i*.

It can be verified that the set W, ?of remaining positions is a v, —stable bridge, i.e.,
satisfies the conditions:
0 is v, ~stable; W, ) G (M) = .
Furthermore, the set W,® constructed is a maximal v, —stable bridge and, consequently, is
closed. By the method of construction the sets W,® and W,® form a partition of the position
space R X R". The assertion of Theorem 8.1 follows from the fact that sets W,?® and W,? exist

and from Theorems 7.1 and 7.2.

In conclusion the author thanks A.I. Subbotin and M.S. Nikol'skii for attention to the
work, and also A.A, Agrachev for useful discussions.
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