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MIXED STRATEGIES AND THEIR APPLICATION 

IN THE ENCOUNTER-EVASION DIFFERENTIAL GAMES* 

S.A. VAKHRAMEEV 

A positional encounter-evasion differential game with geometric constraintson the 
players' controls, depending on the system's state, is examined. The conceptofthe 
players' mixed strategies is introduced and an alternative is proved which asserts 
that either the positional encounter game or the positional evasion game is always 
solvable. The paper continues the investigations in /l-44/. 

1. Dynamic system. Let the controlled system's behavior be describedby the equation 

x. = f (t, 5, u, v), x E Rn, u E RP, v E Rq (1.1) 

where x is the system's phase coordinate vector , u and v are the controls of the first and 
second players, respectively. By 52" we denote the space of all nonempty compacta in Rm with 
the Hausdorff metric h. We assume as specified the mappings 

P:R x Rn+-‘Ap, Q:R x R”+SF (1.2) 

satisfying the following conditions: 
lo. The mappings tH P (t,x),t -Q(t, X) are measurable, while the mappings xw P(t, x), 

ZH Q(t, x) satisfy the Lipschitz conditions 

h (p (t, x), p (t, Y)) 6 a @)I x - Y It h (Q (6 4, Q (t, I/)) <a (t) I x - y I (1.3) 

2O. Measurable mappings 

P, : R + W, Q. : R + 529 
exist such that 

The 

(1.1). 
lo . 
20. 

3O. 

l_J P (L x) c PO(t)* 
ERn 

J_in Q @t 4 c Qo (t) 

following assumptions are made concerning the function f in the right-hand side of 

The function f(.,z, u,u) : R+R” is measurable. 
For all x E R”, CL E P, (t), v E Qo (t) 

1 f (t, 5, u, v) 1 < k (t) (1 4- 1 x 1) 
For all z, y E R”, u’, u” E P, (t), v’, v” E Q. (t) 

1 f (t, 5, u’, u’) - f (t, y, WV, v”) ( < p (4 (1 x - Y I + I u’ - U” I + I v’ - U” I) 

(1.4) 

(1.5) 

Here the functions a, p, k:R +R are nonnegative and locally summable. 

2. On families of Radon measures on Rm. Let pt, tER, be a family of Radon 
measures on R”‘, depending on parameter tE R. We say that the family pl, tE R , is weakly 
measurable if for any continuous function 'p :R”’ + R with compact support the function 

t++ (PLt*cp(U)) = s T(U) dl% 
Rm 

is (Lebesgue) measurable. Of particular interest are weakly measurable families p,, tE R, of 
Radon measures on R”‘, whose supports supp pt satisfy the inclusion 

supp Pt c F (t) E Qrn 
for almost all tER. About such families we shall say that they are concentrated on the 
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mapping Y:R-+ Q*. If the mapping F:R+ Qm is measurable, then such families exist. As a 
matter of fact, let f:R -Rm be an arbitrary measurable branch of mapping F: R-rCP. Then the 
family of Dirac measures 6,(,,, t=_R yields an example of a weakly measurable family of Radon 
probability measures, concentrated on mapping F. 

Proposition 1. Let pt, tER, be a weakly measurable family of Radon measures on R”, 
concentrated on a measurable mapping F : R+9”‘. Then for any function f : R x R’“-+ R measur- 
able in tE R and continuous in uE R”‘, the function 

is (Lebesgue) measurable. 
The proof is based on the theorems of Luzin and of Scorza-Dragoni (see /5,6/). 
For any compactum A E 8” we denote the set of all Radon probability measures concentrat- 

ed on A by A,. It is well known that the set A, is weakly (sequentially) compact /7/. 
Furthermore, it can be proved that the equality 

cenv cp (A) = {& cp (4) 1 IL EA,) (2.1) 
holds for any continuous function cp : R”‘+ R” . As a matter of fact, let c(U,$) be the sup- 
port function of u E Rn 

c (U,N = ;$'"&" 

The set D=((p,cp(n))I~~A~) is convex and compact and its support function is 

c(D,lp) = ;s ('4, (CL, 'P (4)) <c (cp (A), Ip) 
C 

Therefore, D ceonvcp(A). However, we obtain equality (2.1) because 

convD = D 3 q (A) 

Proposition 2.2. Let ~1, t E fl, and vl, tE R be weakly measurable families of Radon 
measures on R"'and R”, concentrated on measurable mappings 

F:R-tW’,G:R+Q” 
respectively. Then the family r)2 = pLt @v,, tE R, of Radon measures on R’+“’ is weakly measur- 
able and is concentrated on the mesurable mapping 

t y F (t) x G (t) : R + Q”+‘” 

The proof follows from Proposition 2.1. 

3. Strategies and motions. For an arbitrary mapping 

F:RxR”-+Q” 
measurable in t=R, by F, (2; t,, t’) we denote the collection of all weakly measurable famil- 

ies t~,t~ R, of Radon probability measures on R”, concentrated on mappings F(.,z]: R-tP” 
for t, Q t< p. A mapping which associates a nonempty subset of p,(z; t,oo) (Qe(z; t,w)) with an 
arbitrary position (t,z) is called a mixed strategy lJ,(V,) of the first (second) player. 

Suppose that the first player chose a mixed strategy LI,. We consider a partitioning A 
of the semiaxis [&,oo) into a system of half-open intervals of the form 

z! < i< tl+r. i = 0, 1, . . ., to = to, Ti + 00 (i +- 00) 

Let 1 A 1 = SUPS (ri+r - ~1). We look at the differential equation 

XA. (t) = <,#’ @ vl”, f (t, XA (t), u, v)> 
(3.1) 

71 < t < zl+17 i = 0. 1, . . ., zA (to) = z. 

@ E u, 61; XA (.(i)), Vt(‘) E 0, bA (d; Tir %+I) 

We see that it has the solution zA(t) = sA (t; to,so, U,, Vt) continuable onto the half-line t> to. 
Indeed, since $) and v\') are probability measures for almost all t, 

1 cp$” @ vi’). f (t, 3, Y, 14, I d I f (t, 5, u> v) 1 < k 0) (4 + I z IL 

I cpp @I vy9. f (t, II, u, 24) - f (1. =, u. v), I d 1 f (t, Y, u, a) - f (t> 2, u, 4 I < B (t) 12 - Y I 

According to Propositions 2.1 and 2.2 the functions t*(pji)@vj*), /(1,x, LL,D)) are measurable. Con- 
sequently, the existence of a unique (under a specific choice of families p':) and vj'1.i = O,i,...) 
solution, continuable onto the half-line t,<t<mr of Eq.(3.1) follows from well-known re- 
sultsinthe theory of differential equations /5/. The solution x,., (t) = XA (t; to, &,, UC, 1’1) of 
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Eq.(3.1) is called the Euler polygonal line generated by the first player's mixed strategy u,. 
The Euler polygonal line generated by the second player's mixed strategy V, is defined analo- 
gously. 

Proposition 3.1. Every Euler polygonal line of the first or second playerisasolution 
of the differential inclusion 

5' E cow f (t, 5, PO (t), Q. (0) (3.2) 

The proof is obtained from the results of Sect.2. From Proposition 3.1 follows the cor- 
rectness of the next definition. 

Every function x(t), t> t,, , for which we can find, on any finite interval to< t< tl, a 
sequence {x,+} of Euler polygonal lines 

xA% (t) = xAk (t; to* xi’), UC, VP’) (xAk (t) = xAk (t; t0, dk:‘, v,, pik’)) 

generated by the first (second) player's strategy U, (V,), such that 

xAk (t) = x (t), to < t < t,, xhk’ + x0, I Ak I + 0, k --t 00 

is called a motion x (t) = x (t; t,, x0, U,) (x (t) = x (t; to, x0, V,)) generated by the first (second) 
player's mixed strategy U, (V,). It can be proved that every motion of the first or second 

player, starting from point x0 at instant t = to is a solution of the differential inclusion 

x' E conv f 0, 5, P (t, 3, Q (t, x)), x (t,) = x0 

4. Encounter-evasion differential game. The game being examined is made up of the 
following two problems. Let nonempty closed sets Mand Nin the position space R x R", an 
initial position (&x0) and an instant 6 > to be specified. 

Problem 1. Find the first player's mixed strategy lJ,* ensuring the contact 

(t, x \t)) E N, to < t < z, (~9 2 (z)) E M, z = ‘c (x (.)) < 6 

for all motions 5 (t) = x (t; to, 50, ccl,*). 

Problem 2. Indicate open neighborhoods G(M) and H(N) of sets Mand N, as 
second player's mixed strategy V,*, such that the contact 

(k r (t)) E H (N), to < t< -c, (~7 x (T)) E G(Ml,r = z (x (.)) < 8 

is exluded for all motions x (t) = z (t; to, xl), v,*). 

well as a 

Problem 1 is called the problem of encounter with setklinside set Nby the instant 8, 
while Problem 2 is called the problem of evading G(M) inside H(N) up to the instant 6. 

5. Stable sets. We say that a set WC R X Rn is u,-stable (v, stable) if for any 

(t*l xz+J E W, t* ‘i t, and vf* E Qe (z,; t,, t*) (pt*&‘, (x,; t,, t*)) there exists P**E P,(x,; t*, t*)(vt* E 
Q, b.; t*, t*)) such that the solution x(t), t*<t< t* of the differential equation 

r' = (k* 8 vt*, f 0, 2, u, u)>, x (tt) = I* (5.1) 

satisfies the condition (t*, r (t’)) E W or the condition (z, x (7)) E M ((z, Z(T)) & H(N)) for some 
r, t, <z Q t*. 

Theorem 5.1. If set WCRXR” is u,-stable (v,-stable), thenits closure lV = Cl W 
is u,-stable (V, -stable). 

We carry out the proof, say, for a u,-stable set W. The following proposition is valid. 

Proposition 5.1. Let vl*=Qe(x*; t*, t*) and x*(Q-tx* as k+m Then there exist v&*) E 
Qo(s,(‘); t,, t*) such that vl@)+-vt* weakly for almost all t, t, < t< t’., 

Indeed, let O(') = {OF), . . .,Of), . ..) be a sequence of coverings of space R@ by open sets, such 
that 

diam O(‘) = max diam 0:‘) + 0 
j 

(i _ m) 

Let ap), i = 1, . . . be a partitioning of unity, subordinate to covering O(I) = (O?, . . .( O(1) 19 . ..). 
We set 

aW (f) = #, 1 ,;j) (+, VT’ = ,$ 6vlfjct,@ttL 4 i = L 2, . . . 

where &)(t), t E R , are measurable functions such that @(t)~ O? n Q(t,z*), if the latter set is 
nonempt;, and @j(f)= u(t) , otherwise, where ~(t),t~ R, is an arbitrary measurable branch of map- 
ping t ++ Q (t. 4. Fromthecontinuity of mapping r~Q(t.z) it follows that we can find a sequence 
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of measurable functions z@')(t) such that avow' E Q (t, z~‘) and "yk) (t) - @ (t) for almost all t, t*g 
t\<1*uniformly relative to i, j = 1,2,. We set 

“ik) = jjj h;k’(t) h2,y, k)(t), k = 1, 2, . . 
j=l 

From the very method of construction of the sequence (vjk)) it follows that 00 E Qc (& f *’ 1:) 
and yik' 

v1 
-v~* (k- w) weakly for almost all t,t,<t<t*. 

* I 
Proposition 5.1 is proved. 

Let us assume now that the assertion of Theorem 5.1 does not hold. Then there exist 
(t*, x*) E w, t* > t,, vt* E Q, (s,: t*, 
5 (t), 1, <XF, 

t*), such that for any measure pl* E P,(r,; t,, t*)the solution 
of Eq.(5.1) satisfies the conditions 

(t*, z (t*)) G w, (T, z (T)) e M, t, < 7 < t* 

However, since (t*, z*)E~, a sequence {(t,@), x,(k))} of points of W exists such that (t*(k), 
x,(“))+(t*,x*), k+co. By Proposition 5.1 a sequence vt@)~Qc(z*@), t,, t*) exists such that vt@--t 
vt* (k --t m) weakly for almost all t, t, < t< t*. Finally, from the z&-stability of set W 
follows the existence of pLt(k) E P, (x*ck); t,tk), t*) such that the solutions xk (t), t,ck’ < t.< t*, 
k=l,Z..., of the differential equation 

xi (t)= (p?’ @ Yik), f (t, Xk @), u, v)), z(tf’) = xy 

satisfy either the condition (t*,xk (t*))E W or the condition (%k,zk (Tk))E M for some %k, 

t,,‘“’ < rk < t*. It can be shown that some subsequence of sequence {xk(t)} converges uniformly to 
an absolutely continuous function 5 (0, t, < t< t* I which satisfies Eq.(5.1) with some pt* E 

P, (2,; t,, t’). This fact leads to a contradiction. The theorem is proved. 

6. Derivation of the basic estimate. Let the functions z(t), y(t), t> t, satisfy 
Eqs.(6.1) and (6.21, respectively, 

x' = @L*t 0 Yt, f (t, x, % v)>, x (t*) = x* (6.1) 

y. = (pt @ $3 f (t, Y? 4 4, Y ct*j=y* (6.2) 

Here the families pl ~&‘,(y,; t,, M) and vt E Q,(x*; t,,oo) are arbitrary, while the families 

pL1+ E p, (2,: t*, m) and v*t EQ,(y,; t,,oo) were chosen from the condtions 

max K(t,x*,z*,pt*, 9= min max K(t,+,+,p, y), t St* 
vEQ,(t, 4 ~EPJ!, r.) v=Q,(t. ~4 

K(t,x,z,~,Y)=()l~vY,f(t,x,U,u)), %+z=“*-YY, 

The possibility of making such a choice can be substantiated on the basis of the results in 
Sect.2 and of the Filippov-Kasten theorem (see /5/j. 

Theorem 6.1. For an arbitrary bounded domain GC R X R" containing the positions (t*, 
x1) and (t*,y,) there exists a locally summable function mG: R --f R such that the inequality 

ps@j<p2(t,)(l+2j y@)dr) + S v@,,QmWd~ (6.3) 

f. t, 
L 

m (t) = 4gp (t) + 8mc (t), g = diam G, cp (t*, t) = S mG b) dz 

y (t) = B (t) + 28 0) a (a, p (t) = Ix (t) - Y CtE, I 

is valid for all t>t*. 
The proof of Theorem 6.1 is carried out analogously to /1,2/ and is based on the folloW- 

ing assertion which can be proved by using the standard construction of a partitioningofunity. 

Proposition 6.1. Let the mapping F :Rk+ ‘2’ satisfy the Lipschitz condition 

h(F(d, F(!h)<LFi5-Yi 

Then for any measure p (X)E F,(x) there exists a measure p (y)E F,(y) such that 
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I (p (4, cp (4) - (CL (!I), cp (4) I < WF 1% - Y I 
for any function m: R"'+R satisfying the Lipschitz condition 

I cp (4 - cp (@. I < L9 I u - v I 
7. Extremal barrier. Let WCR X R” be a nonempty closed set in the positionspace 

R X R”. The first and second player's mixed strategies lJCe and Vce extremal to this set are 
defined thus. Let rr = {(t,z) t = z}. If St, n W = 0, we set 

u,” (t*, x*) = P, (z*; t*, c-)> V,‘(t,; 4 = Qe (G; L ~1 
otherwise 

w*> pt*, v) = min max .K(t,l+,z*--w+,~,v),t>t+l 
PEp,V.X.) =w.a 

max min 
veQ,V, x.) )reP,(t. x.) 

K(t,X,:wu, -X*,p, v),t >t+) 

where W,is the vector of the section W(t,) of set W by the hyperplane rfr, lying closest 
to z*. Using estimate (6.3), the next two assertions can be proved analogously to /1,2/. 

Theorem 7.1. Let WC R X R” be a closed a,-stable set, Vi be a mixed strategy ex- 
tremal to this set, and (to,X,)= W. Then for any motion X (t) = X(t; i& X4, UC*) the inclusion 
(t,X(t))~ W is fulfilled up to the instant r that (r, X (X)) E M. 

Theorem 7.2. Let WC R x Rm be a closed v,-stable set, Vl be a mixed strategy ex- 
tremal to this set, and (to, X4)E W Then for any motion X (t) = 3 (t; f4,X4, V,“) the inclusion 
(t,z(t))~ W is fulfilled up to the instant 'c that (T, X (X))@H (N). 

8. Alternative. The following theorem is valid. 

Theorem 8.1. Let the condition formulated in Sect.1 be fulfilled. Then either Problem 
1 or Problem 2 is always solvable for any nonempty closed sets Mand N, initial position 
(t,, X0) and instant 6 > to. 

Proof. We first consider Problem 1 on the encounter with set M inside set Nby the in- 
stant b. From the halfspace t,<s we remove those positions (tr, X*) for which the following 
two circumstances obtain simultaneously. 

lo. The problem of evading at least one neighborhood G(M)of set Minside at least one 
neighborhood H(N) of set Nup to the instant 6 > t* is solvable from the position (&x,) as 
from the initial position. 

2O. An instant t*, (t* < t* < *) and a second player's control vt* E Qe(x+; t,, t') exist such 
that under an arbitrary choice of the first player's control pt* E P,(z*, t,, 9) the solution 
5 (t), t*< t < t* of the differential equation 

5' = <pt* @'v,,, f (t, X, u, v)>, X (tz) = X+ 
satisfies the condition (&x,(t))@ M, t, < t< t+. 

The set W,,Qof remaining positions possesses the following properties which follow im- 
mediately from its construction. 

iuo: Set WUv is +-stable. 

2,,O Wu4 CN. 
39. At some instant ~<6 the section Wu4(z) of set W, d by the hyperplane rc is wholly 

located in the section M(r)of set Mby the same hyperplane. 
Every set satisfying the three conditions listed is called a a,-stable bridge. Itsmaxi- 

mality, and hence, by virtue of Theorem 5.1, its closeness follow from Theorem 7.1 and the 
method of constructing the bridge W,,4. 

We now consider the problem of evading setG(M) insidesetH(N)up to the instant 6 > to. 
From the halfspace t<s we remove those positions (t*, X*) for which the following two circum- 
stances obtain simultaneously. 

lo. The problem of encounter with at least one set G*(M)cG(M) inside at least one set 
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Hv) cH(N)by the instant 6 > t, is solvable from 
position. 

2O. An instant tf 
that under an arbitrary 
s(t), t, < t < L* , of the 

(& < t* <@) and a first player's control pt* E P,(s,; t,, t*) existsuch 
choice of the second player's control vt* eQ,(x,; t*,t*) the solution 
equation 

the position (1,,s,) as from the initial 

5' = +t* @ vt*, f (t, I, u, u)), 5 (t*) = 5* 

is such that (t, r(t)) E H (N) when t, Q t,< t*. 
It can be verified that the set W,*of remaining positions is a U, -stable bridge, i.e., 

satisfies the conditions: 
W,* is v,-stable; W,* fl G(M)= 0. 

Furthermore, the set W,o constructed is a maximal v, -stable bridge and, consequently, is 
closed. By the method of construction the sets W,,V and W,f’ form a partition of the position 
space R x R”. The assertion of Theorem 8.1 follows from the fact that sets W,Vand W,bexist 
and from Theorems 7.1 and 7.2. 

In conclusion the author thanks A.I. Subbotin and M.S. Nikol'skii for attention to the 
work, and also A.A. Agrachev for useful discussions. 
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